回归分析

回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。



1877年,英国的遗传学者高尔登(Francis Galton)首先把“回归”一词作为统计概念使用,为了研究父代与子代身高的关系,高尔顿搜集了1078对父亲及其儿子的身高数据。他发现这些数据的散点图大致呈直线状态,也就是说,总的趋势是父亲的身高增加时,儿子的身高也倾向于增加。但是,高尔顿对试验数据进行了深入的分析,发现了一个很有趣的现象—回归效应。因为当父亲高于平均身高时,他们的儿子身高比他更高的概率要小于比他更矮的概率;父亲矮于平均身高时,他们的儿子身高比他更矮的概率要小于比他更高的概率。它反映了一个规律,即这两种身高父亲的儿子的身高,有向他们父辈的平均身高回归的趋势。对于这个一般结论的解释是:大自然具有一种约束力,使人类身高的分布相对稳定而不产生两极分化,这就是所谓的“回归效应”。高尔登又于1888年引进“相关”一词。他的学生皮尔逊于1890年初次创立“积差法相关系数”计算公式。后来的统计学家们还创用了多元回归以及偏相关、复相关等名词,用以测度两个以上变量的回归关系和各种相关关系。

“回归”名称的由来-――高尔顿的父子身高试验

只支持选中一个链接时生效http://blog.163.com/chenyan_2959/blog/static/2834735820092932553396/